Purification and characterization of ribitol-5-phosphate and xylitol-5-phosphate dehydrogenases from strains of Lactobacillus casei.

نویسندگان

  • S Z Hausman
  • J London
چکیده

A simple three-step procedure is described which yields electrophoretically homogeneous preparations of ribitol-5-phosphate dehydrogenase and xylitol-5-phosphate dehydrogenase. The former enzyme is a 115,000-molecular-weight protein composed of two subunits of identical size and is specific for its substrate, ribitol. The xylitol-5-phosphate dehydrogenase exists as a tetrameric protein with a molecular weight of 180,000; this enzyme oxidizes the phosphate esters of both xylitol and D-arabitol. Characterization of the physical, kinetic, and immunological properties of the two enzymes suggests that the functionally similar enzymes may not be structurally related.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pentitol metabolism in Lactobacillus casei.

Strains of Lactobacillus casei capable of growing on either ribitol or xylitol carry out a heterolactic fermentation producing ethanol, acetate, and a mixture of D- and L-lactate. Following conversion of the pentitols to ribulose 5-phosphate or xylulose 5-phosphate via enzymatic steps unique to these organisms, the intermediate products are further metabolized by enzymes of the pentose pathway....

متن کامل

Utilization of D-ribitol by Lactobacillus casei BL23 requires a mannose-type phosphotransferase system and three catabolic enzymes.

Lactobacillus casei strains 64H and BL23, but not ATCC 334, are able to ferment D-ribitol (also called D-adonitol). However, a BL23-derived ptsI mutant lacking enzyme I of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was not able to utilize this pentitol, suggesting that strain BL23 transports and phosphorylates D-ribitol via a PTS. We identified an 11-kb region in the g...

متن کامل

Directed evolution of a second xylitol catabolic pathway in Klebsiella pneumoniae.

Klebsiella pneumoniae PRL-R3 has inducible catabolic pathways for the degradation of ribitol and D-arabitol but cannot utilize xylitol as a growth substrate. A mutation in the rbtB regulatory gene of the ribitol operon permits the constitutive synthesis of the ribitol catabolic enzymes and allows growth on xylitol. The evolved xylitol catabolic pathway consists of an induced D-arabitol permease...

متن کامل

D-Mannitol 1-phosphate dehydrogenase and D-sorbitol 6-phosphate dehydrogenase in Aerobacter aerogenes.

n-Mannitol has been used as a carbon source for the growth of many microorganisms. Some bacteria contain diphosphopyridine nucleotide-dependent dehydrogenases that will oxidize n-mannitol to n-fructose at the nonphosphorylated level (2-5). On the other hand, Wolff and Kaplan (6, 7) have reported the presence of a diphosphopyridine nucleotide-dependent n-mannitol l-phosphate dehydrogenase that o...

متن کامل

D-Mannitol l-Phosphate Dehydrogenase and D-Sorbitol 6-Phosphate Dehydrogenase in Aerobacter aerogenes”

n-Mannitol has been used as a carbon source for the growth of many microorganisms. Some bacteria contain diphosphopyridine nucleotide-dependent dehydrogenases that will oxidize n-mannitol to n-fructose at the nonphosphorylated level (2-5). On the other hand, Wolff and Kaplan (6, 7) have reported the presence of a diphosphopyridine nucleotide-dependent n-mannitol l-phosphate dehydrogenase that o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 169 4  شماره 

صفحات  -

تاریخ انتشار 1987